The Scottish Journal of Geology continues the Transactions of the Edinburgh Geological Society and the Transactions of the Geological Society of Glasgow, and is sponsored by the councils of the two societies. It contains two parts per volume. The Journal is sent to members of both societies. Details of membership may be obtained from the secretaries, whose names appear below.

Contributions or legacies to assist towards the cost of publication of the Journal would be welcomed by the Editorial Board.

EDITORS

COLIN BRAITHWAITE
ROBERT CHEENEY
TIM DEMPSTER

ROB DUCK
PETER HILL
SUE RIGBY

PHIL STONE
ROY THOMPSON

PUBLISHING HOUSE STAFF EDITOR

HELEN KNAPP
(e-mail: knapph@geolsoc.org.uk)

Secretaries of Societies

EDINBURGH
J. MICHAEL DEAN
6 Corrennie Gardens
Edinburgh
EH10 6DG

GLASGOW
DR I. ALLISON
Faculty of Science
University of Glasgow
Glasgow, G12 8QQ

Front cover illustration

IPR/1–108 British Geological Survey @ NERC

The dawning of a new millennium seems unlikely to produce a distinctive feature in the geological record. If you are around to read this text then clearly the ‘millennium bug’ did not produce a mass extinction event. The most likely candidate could be a characteristic geochemical layer (?elevated P-Mg-K) formed by fall-out from innumerable and only slightly diachronous firework displays. Overall, in geological terms, there is more sense in seeking multiples of millennia to celebrate. Ten millennia back and Scotland was only just emerging from the last Ice Age. We must go back further, past Tertiary igneous activity around 50 000 millennia, to find most Scottish geology emerging beyond 250 000 millennia. Perhaps the most striking coincidence with appropriate dates occurs at 1 000 000 millennia, that is 1000 Ma, and is the subject of this volume’s cover picture; the arresting image is of Suilven (731 m) in the NW Highlands. The mountain is an outlying relic/inselberg of Torridonian sandstone resting unconformably on Archaean Lewisian gneiss. The oldest Torridonian sandstone is believed to be about 1000 Ma old and represents part of a terrestrial deposit composed of unmetamorphosed fluvial arkosic sandstones which filled rift basins and palaeovalleys within the contemporary land surface. The exposed surface of Lewisian gneiss, exhumed by erosion of the overlying sandstone, therefore approximates to the land surface of embryonic Scotland one million millennia ago. The Lewisian gneiss takes us back more than twice as far to the generation of the first Scottish rocks almost three million millennia ago. Beyond that is the origin of the Earth, most certainly an event worth celebrating.

The cover illustration is taken from the photographic collection of the British Geological Survey, Edinburgh (reference number D 2387) and is reproduced by kind permission of the Director, British Geological Survey. © NERC. All rights reserved.

Copyright © Scottish Journal of Geology 2000
Reproduction of authors’ summaries is authorized

Prices for non-members: volume subscription £95 – single parts £50 (overseas $159/$84)

Subscription enquiries should be addressed to the Journal Subscriptions Department, Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK. (Tel 01225 445046; fax 01225 442836.)