
















shaped as it bulges outward from the base and then tapers
quickly to a clawed tip. This characteristic digit shape
suggests that the track might reasonably be associated
with the ichnogenus Eubrontes (Olsen et al. 1998).

Megalosauripus tracks tend to have straight parallel sides
along the edges of digit III and the observed interdigital
angle is too small for the track to be assigned to Kayentapus
(Lockley et al. 1998, 2011).

Fig. 9. A sampling of the types of large tridactyl track morphologies observed at site BP2 with (a) BP2_48 presenting as a bulbous-toed tridactyl track with
a clear claw mark on digit III; (b) BP2_23 constituting a skinny-toed faint track with a broken right lateral digit and a hint of a proximal hallux impression;
and (c) BP2_26 representing a large track with sharply tapering, narrow toes and elongated hypices.
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Both BP2_23 and BP2_26 (Fig. 9b, c respectively) are
clear tridactyl tracks with indeterminate ichnotaxonomic
diagnoses. BP2_23 is mesaxonic, 21.5 cm long and 16.9 cm
widewith interdigital angles of 28° and 32(?)°. BP2_23 has a
slightly elongated heel with a hint of a sinistro-posteriorly-
directed hallux impression. The preserved toes of BP2_23
are narrow and taper to points, with the left lateral digit II
exhibiting sinusoidal curvature at the most distal end.
BP2_23 is both faint and broken and, therefore, is unsuitable
for ichnotaxonomic diagnosis. While BP2_23 is included in
this discussion mainly to emphasize the variations within the
tridactyl tracks at the site, the morphology of BP2_26
possibly provides a proxy for the consistency of the substrate
at the time of track formation.
BP2_26 is elongate with an almost triangular heel and

short, narrow toes. The narrow pointed toes, scoop-shaped
hypices, and triangular heel correspond well to the
presentation of deep tracks made over incompetent substrates
in experiments (Gatesy et al. 1999; Gatesy 2003, fig. 6). The
morphology of the track indicates that the mud across which
the trackmaker was walking was poorly consolidated, allowing
the individual to sink deeply into it and for the walls of the toe
and heel impressions to collapse immediately on withdrawal of

the foot. This type of tridactyl track morphology resembles
previously described footprints from the Duntulm Formation
near Duntulm Castle and from the Valtos Formation near Kilt
Rock (Clark&Barco-Rodriguez 1998; Clark et al. 2004, 2005;
T.J. Challands & D.A. Ross, pers. obs.).
In addition to the tracks discussed, several other tridactyl

tracks are present at the site. However, they are generally
broken or eroded to the point where no diagnostic information
is attainable for ichnotaxonomy. General measurements of all
tridactyl tracks from the site and the results of assessing
trackmaker affinities according to the parameters in Moratalla
et al. (1988) are contained in Tables 3 and 4, respectively.
Most of the tracks at the site suggest theropod affinities.

Discussion

Although the tracks at the BP2 site are abundant, they are
mostly difficult to interpret. In addition to the challenges
arising from working on a modern tidal locality (wave
weathering, limpet scarring, and obscuring growths of
barnacles and seaweed), the track-bearing layer is metamor-
phosed as a result of the intrusion of the adjacent 6 m sill.
There is mixed evidence for whether these features represent

Table 3. A summary of all the measurements taken on the distinctive tridactyl tracks at the site

Track ID L W K M BL2 BL3 BL4 LII LIII LIV WBII WBIII WBIV WMII WMIII WMIV α β

BP2-23 21.5 16.9 8.4 9.6 11.5 12 9.1 19.1 21.5 17.8 4.3 3.4 3.0 2.3 2.1 1.1 27.6 31.7
BP2-26 53.2 37.5 38.8 37.1 9.5 12.8 7.0 45.6 53.2 43.7 7.0 11.8 3.5 3.2 5.2 3.4 20.2 24.7
BP2-31 40.4 35.1 18.2 17.1 10 18.6 8.3 27.6 40.4 24.3 4.6 6.1 4.9 2.6 3.2 3 39.5 32.9
BP2-46 52.1 48.3 33.2 n/a 19 19.5 n/a 50.3 52.1 n/a 10.3 11 n/a 7.4 7.5 n/a 29.8 n/a
BP2-48 37.1 31.1 21.4 19.3 13.7 19.4 n/a 29.1 37.1 n/a 7.7 9.6 n/a 7.4 8.8 n/a 26.0 37.3

See Figure 4 for measurement abbreviations.
All values are shown in centimetres with the exception of α and β (°).

Table 4. Parameters used for evaluating theropod/ornithopod affinity summarized for the measurable tridactyl tracks

Track parameters Threshold values and probability that the track is either theropod or ornithopod BP2_23 BP2_26 BP2_31 BP2_46 BP2_48

L/W 80.0% Theropod > 1.25 > Ornithopod 88.2% 1.27 1.42 1.15 1.08 1.19
L/K 70.5% Theropod > 2.00 > Ornithopod 88.0% 2.56 1.37 2.22 1.57 1.73
L/M 65.0% Theropod > 2.00 > Ornithopod 90.7% 2.24 1.43 2.36 1.92
BL2/WMII 76.1% Theropod > 2.00 > Ornithopod 97.4% 5.00 2.97 3.85 2.57 1.85
BL3/WMIII 72.7% Theropod > 2.20 > Ornithopod 97.7% 5.71 2.46 5.81 2.6 2.20
BL4/WMIV 76.1% Theropod > 2.00 > Ornithopod 97.6% 8.27 2.06 2.77
LII/WBII 84.6% Theropod > 3.75 > Ornithopod 90.2% 4.44 6.51 6.00 4.88 3.78
LIII/WBIII 70.6% Theropod > 4.00 > Ornithopod 91.5% 6.32 4.51 6.62 4.74 3.86
LIV/WBIV 73.7% Theropod > 3.75 > Ornithopod 93.4% 5.93 12.49 4.96

Themajority of the definitive tracks display a strong theropod affinity. This affinity is supported by observations of claws, narrow toes, and an elongate heel in several specimens. Blank
cells indicate ratios that could not be calculated due to one of the component measurements not being feasible for the track in question.

Table 5. Hip heights calculated from tridactyl and sauropod tracks at BP2

Tridactyl tracks Sauropod tracks

Track ID Estimated hip height (cm) Track ID Estimated hip height (cm) Track ID Estimated hip height (cm)

BP2_23 86 BP2_06 212 BP2_29 232
BP2_26 213 BP2_20 236 BP2_34 224
BP2_31 162 BP2_24 224 BP2_37 160
BP2_46 208 BP2_27b 268 BP2_40 212
BP2_48 148 BP2_28 228 BP2_45 220

All hip heights are tabulated in centimetres.
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true tracks, transmitted tracks, or undertracks and it is likely
that the site has examples of all three track types. Some
exemplar prints (BP2_40 and BP2_48; Fig. 8 and Fig. 9c,
respectively) preserve the claw and heel impressions
associated with true tracks while other tracks show
transmitted features in cross-section (Fig. 2). Additionally,
some tracks (like those that compose Trackway 1; Fig. 7) are
little more than shallow, low-sided impressions and could
therefore be undertracks. Ultimately, few fine details, such as
digits and heel marks, are discernable on the vast majority of
the footprints preserved at this site, and thus much of the
evidence for different track characteristics is equivocal.
As seen at the Duntulm site (Brusatte et al. 2015a), the

BP2 tracksite from the Lealt Shale Formation is dominated
by sauropod tracks that are tentatively assigned to the
ichnogenus Breviparopus. Although Farlow (1992) sug-
gested that tracks of this ichnotype might belong to
prosauropod dinosaurs, the general consensus among
others is that Breviparopus is a valid sauropod ichnotaxon
(Lockley et al. 1994; Santos et al. 2009; Marty et al. 2010).
Indeed, although they are on the whole smaller, the sauropod
footprints at BP2 most closely resemble Late Jurassic tracks
from the Atlas Mountains of Morocco and from the Jura of
Switzerland (Dutuit & Ouazzou 1980; Marty et al. 2010).
Other sauropod tracks with hints of anteriorly directed toes
are also found in the Aalenian to Bajocian Ravenscar Group
of the Cleveland Basin in Yorkshire (Whyte et al. 2007, fig.
7aii, aiii). These tracks were also referred to Breviparopus
(Romano et al. 1999; Romano &Whyte 2003). The BP2 site,
in conjunction with the other large sauropod tracksite at
Duntulm and the scattering of sites including the footprints
from other parts of the world mentioned above, indicates the
presence of sauropods with plesiomorphic foot character-
istics (either non-neosauropods or basal neosauropods) into
the Middle and Late Jurassic (Bonnan 2005; Brusatte et al.
2015a). The trackmakers of the BP2 sauropod prints are
estimated to have stood c. 1.5–2.5 m at the hip – fairly large,
but not as colossal as celebrated species like Brontosaurus,
Diplodocus, Brachiosaurus, and the titanosaurs from later in
the Jurassic and Cretaceous (comparative measurements
taken of skeletal reconstructions in Paul 2010).
In addition to the sauropod tracks, several theropod tracks

are present at the BP2 site. These tracks reflect medium-sized
individuals (with estimated hip heights summarized in
Table 5 ranging from 87 cm to 213 cm) that spent some
time in the same lagoonal environment as the small
sauropods. While many tridactyl tracks did not conform
well to a particular ichnotype, some morphological corres-
pondence to Eubrontes was observed in BP2_48. We
tentatively associate that track with this ichnogenus.
Eubrontes is thought to have been made by primitive non-
tetanuran theropods (coelophysoid, ceratosaurian, or mega-
losauroid-type theropods) (Olsen et al. 1998; Smith &
Farlow 2003; Getty et al. 2017), although a minority of
workers contend that the ichnogenus could correspond with
the feet of prosauropod dinosaurs such as Plateosaurus
(Weems 1987; Miller et al. 1989). The presence of well-
defined tridactyl tracks is particularly interesting because the
previously described sauropod-dominated lagoonal tracksite
at Duntulm is characterized by an almost exclusively
monotypic assemblage, as only one poorly preserved

tridactyl track was found in the initial survey of that site
(Brusatte et al. 2015a).

Conclusion

We report c. 50 dinosaur tracks at a new Middle Jurassic
tracksite on Skye. This site is difficult to interpret because the
tracks are poorly preserved due to contact metamorphism
from a later dolerite sill and to tidal erosion. Despite these
complications, we are able to identify the tracks as belonging
predominantly to sauropods with several large, tridactyl
morphotypes with theropod affinities also present. The
sediments at the BP2 site most likely reflect a lagoonal
environment. Indeed, the presence of sauropod tracks in this
locality reinforces the growing number of observations,
including in the slightly younger Duntulm Formation of
Skye, that sauropod dinosaurs frequented the lagoons of
Middle Jurassic Scotland.
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